六安沧州西安三亚宝鸡菏泽
投稿投诉
菏泽德阳
山西湖州
宝鸡上海
茂名内江
三亚信阳
长春北海
西安安徽
黄石烟台
沧州湛江
肇庆鹤壁
六安韶关
成都钦州

推荐系统分析猜你喜欢是怎么产生的

  本文将从最简单的概念开始,逐步讲解推荐系统的发展历程和最新实践。以产品经理的视角,阐述推荐系统涉及的算法,技术和架构。本章是第一章,将先概括性介绍推荐系统。
  推荐系统是迄今为止,人工智能,大数据和云计算等前沿技术应用得最全面的产品场景之一。它是众多前沿技术的结晶,集百家之大成,复杂而微妙。但抽茧剥丝后,它又跟众多的科学那样,简洁而优美。像猜你喜欢这样的功能,已经数见不鲜,陪伴我们多年了。但这个功能具体是怎么实现的呢?我想通过这篇文章跟大家聊一聊。
  在介绍推荐系统之前,先简单介绍下人工智能技术。
  01解决人工智能问题的两种思路
  人工智能的算法,涵盖了概率,统计,高等数学,计算机,大数据等多个学科的知识,抽象且复杂。这里不打算给人工智能做内涵和外延的定义性解释,而是从更具象的角度来阐述这个问题。
  机器智能和飞上蓝天,都是人类千百年来的梦想,而且这个两个尖端科学都经历了直接仿生的思路失败后,改变思路获得了突破。
  因为看见鸟能飞,最早制造飞行器的思路,都是模仿鸟的结构。达芬奇是个伟大的艺术家,同时也是个能工巧匠,他设计了一个非常巧妙且像鸟的飞行器,但似乎并没有什么用。历史上第一个真正驾驶飞行器飞上蓝天的人,是把飞行器做的最不像鸟的莱特兄弟。飞机的诞生,建立在流体力学的基础上。
  类似地,历史上,人工智能有两种主要的思路:
  一种是早期的主流思路:模仿人类学习的过程,将事物的特性描述给机器,从而让机器获得跟人类等同的认知。
  按照这种思路,要让机器识别出猫来,就类似于要告诉机器:猫有四条腿,两只眼睛,身上有柔软的毛等等特征。因为人就是这样认识猫的。但是这种思路从1956年开始,被研究了十年之后依然毫无进展而被搁置。
  另一种是现在的思路:让机器自己从数据中学习,从而获得类似人类的认知。
  所以,我们现在看到的人工智能术语名称,主要都是机器学习(MachineLearning),深度学习(DeepLearning),强化学习(ReinforcementLearning)等。
  按照这个思路,我们要识别出猫,只要给机器一系列图片,并标记好哪些是猫,哪些不是猫。机器通过图像数据训练模型,然后再用训练好的模型把猫识别出来。
  推荐系统的思路也是这样,通过让机器学习每个用户的点击,购买,分享,收藏和负反馈等代表用户喜好和厌恶的数据,以让机器知道用户的偏好,从而实现对用户可能喜欢的物品进行推荐。
  02人工智能的三个过程
  按机器学习的思路,人工智能的实践都可以简单地分为三个过程:数据,学习和决策。
  1。数据
  首先,机器需要感知的事物对象,就要通过数据。这个数据有可能是现实世界中的实际数值,如温度,湿度,股票价格等等。也有些是数字化的文件,如图像,语音等。
  对于大多数的数据,机器并不能直接就读懂他们,而需要我们用算法来从这些数据中提取特征。
  比如在深度学习图片识别领域,需要用多层神经网络抽取出图像的基础特征。实践表明,高阶特征可由低阶特征组合而成。下图中,最底层的正交边经过组合后,就可以得到脸,车,大象和椅子。反过来讲,任意图片,经过多层神经网络特征抽取之后,都可以得到相似的基础特征。所以可以简单地认为,基础特征的不同组合形成了不同的的图像,提取出图像的基础特征和组合参数就能识别图像。
  由于数据形式不同,推荐系统算法并不能像图像识别算法那样直接通过堆叠神经元层级来抽取特征。推荐系统抽取特征的过程需要不同类别算法的辅助。如推荐系统需要构建用户画像和物品画像,要用算法或规则先把用户的偏好标签和物品的特征标签都打好,计算好权重,然后再输入模型进行学习。
  2。学习
  再者,学习则是机器通过算法,通过大量的数据不断迭代调优,训练模型的过程。
  3。决策
  最后,决策就是通过训练好的模型进行预测或分类等。这些都比较好理解。
  4。小结
  一个推荐系统,会由很多个模型构成。小到一个用户画像标签的预测模型,大到推荐的排序模型都可以拆解成数据学习决策的过程。这便是解决问题的思路。
  因为不同性别的用户在物品偏好上有较大的不同。对于很多平台,预测性别是个必选的工作。这是个有监督学习问题,我们可以这样解决:
  数据。首先挑选跟用户的性别有关数据。假设挑选了头像,昵称,手机型号,用户APP安装列表和点击记录等数据。然后将用户数据中这些字段和已知性别的数据挑选出来。
  学习。挑选一个模型进行学习拟合。一般地可以选择逻辑回归模型,或者决策树类的模型进行拟合。
  预测。用已学好的模型对未知性别的用户进行预测。
  03推荐系统的作用
  介绍完人工智能的感知,学习和决策三个过程,下面开始介绍推荐系统。
  在互联网商业平台上,如今日头条,快手,淘宝等,存在供给和需求双方,双方的代表是用户(User)和物品(Item)。没有推荐系统的时候,用户和物品的连接方式一般有三种主要方式:
  物品经小编推荐给了用户
  用户自己搜索了需要的物品
  物品被用户A推荐给了用户B
  这三种连接方式满足了大多数的需求,也一直运行良好。不过移动互联网时代,手机屏幕小,单屏可曝光内容也少了很多。特别是在流量越来越难获取的当下,平台的主动推荐单纯靠运营人员编辑,局限性就比较明显:
  运营大多推荐大众喜欢的物品,长尾物品得不到足够曝光。
  大众商品不等于人人喜欢,存在推荐不精准而导致的流量浪费。
  推荐数目有限,内容不能无限下拉,用户看完即走。
  为了解决以上这些问题,我们引进了推荐系统。
  04推荐系统的工作流程
  从本质上讲,推荐的过程,就是根据不同的用户偏好,对物品进行排序,然后择优推荐。
  极端情况下,如果只有10个物品需要推荐,我们为每个用户都针对这10个物品进行全排序就可以了,这不需要很大的计算资源。
  但是,当被推荐物品达到上百万个的时候,我们就不可能给每个用户都进行全排序了。一般来说,推荐结果要在收到用户请求后,10毫秒左右的时间就给出,做物品全排序这么短时间是不可能达成的。所以推荐的时候,只能对部分物品进行排序。
  推荐系统一般做点击预估较多,我们这里以点击预估为例。系统给用户做推荐,一般按照以下流程进行:
  如上图所示,给用户做出推荐响应的过程分为三个:
  召回:从百万以上内容池中快速初筛出候选集。
  初排:根据点击率预估给候选集初步排序。
  精排:根据需要调整排序。
  1。召回
  收到用户请求后,我们需要一些快速的算法或者规则,从上百万甚至上亿的物品库中将最有可能的物品初步筛选出来。这个筛选的过程就叫做召回(Recall),也有些互联网公司将这个过程叫做匹配(Matching)。召回完成后,就可以得到几百个推荐候选集。一个推荐系统一般有多个召回算法或者召回规则,这叫做多路召回。如:
  基于用户画像标签召回。
  基于地理位置信息召回。
  基于物品协同过滤召回。
  基于热门商品召回。
  2。初排
  召回过程完成后,得到的候选集就被输入排序模型进行排序。模型将预测每个物品被用户点击的概率,且按照点击概率高到低进行排序。
  但是这个排序结果一般不是最终推荐给用户的结果,所以这个过程叫初排。初排后,一般会产生几十个推荐结果给下一步。
  3。精排
  前面提到人工智能的两种思路。但是,在第二种思路大行其道的今天,并不是第一种思路就消失殆尽了。
  在推荐系统中,还需要策略产品经理设定一些专家规则。在算法还没有学习到某方面知识的时候,用这些规则告诉机器如何处理一些问题。精排就是需要使用规则的场景之一。
  精排一般是对排序的结果进行额外的筛查,降权或升权处理的过程。下面是一些常见的精排时处理:
  对推荐结果的进行调整,保持每次推荐的多样性。如一口气推荐了10款华为手机,而且都靠的很近,这个时候就需要将结果减少,如只要前两个,而且打散。
  出于商业目的,对一些物品进行流量扶持,将推荐结果中该类物品排到前面。甚至某些物品不管有没有被推荐,都直接插入并置顶。
  对有违规风险,或者已经下架,或者该用户不喜欢的物品进行过滤
  精排结束后,一般会产生810个结果直接推荐给用户。这就是整个推荐的过程。
  05结语

今天我想说说心里话今天我想借这次作文,把这心里话,一字一句地讲给自己听,讲给这个,我自己都不太熟悉的自我。嘘,安静点,我在讲呢。我的心里话之我害怕。我害怕,别人眼里黯淡下来的光。我总……风雨过后见彩虹天眼,学名FAST,位于贵州省平塘县克度镇金科村大窝凼内,是全世界最大的射电望远镜,这个暑假我就去那儿一睹了它的风采。要想见到天眼,就得登上将近八百级的台阶。前面的……上初中我收获了感动告别了天真而又烂漫的小学生活,踏进新学校,我既兴奋又不舍,其中还有满满的感动。进入中学一段时间,我已经渐渐习惯了初中快节奏而又有规律的学习生活,结识了许多新同学,也认识了……童年趣事池塘边的榕树上,知了在声声叫着夏天;草丛边的秋千上,只有蝴蝶停在上面童年是什么?是妈妈的摇篮曲,童年是纯真、难忘的岁月。童年也是一幅色彩斑斓的画面,画着儿时的天真与烂漫。每个人……牧童改写成作文字【牧童改写】王梓豪夕阳西下,太阳收回了它的最后一缕阳光,月亮渐渐地从云层冒了出来,白天的喧闹变成了寂静。广阔的草原,在天底下,一碧千里,望不到头,好像一条巨大的绿毯……我家的小乌龟去年,爷爷给我买了一只小乌龟。小乌龟很可爱,我仔细地观察了这只小乌龟,它有一个淡黄色的三角形脑袋,像蛇的头一样。脑袋两旁镶嵌着一对亮晶绿豆般的小眼睛,小眼睛向外突出,显得格外精……快乐读书日太阳公公早早地起了床,从厚厚的云中爬出来,在天空中把金剑般的温暖阳光洒向大地,微笑着与人们打招呼。我背着书包,迈着轻快的步伐走进教室。叮铃铃上课铃响了,老师面带微笑,手里……军训第四天心得体会当军训持续几天以后,那感受必然是跟第一天有多区别的,因为这时候你已经脱去了一开始的稚嫩,再也一开始对军训的惧怕。下面是小编为大家分享的几篇军训第四天心得体会的范文!军训第……累了真的累了又在午夜的空悲里沉醉,面对的倒影是可悲,烈酒带不走爱的余味,醉过的人才能体会,心在残缺的记忆里徘徊,只留下孤独与我相随为你流下了我最后一滴泪,我情愿放手,是什么在改……中医三焦辩证浅析三焦辩证一、前言何为三焦辨证,首先我们必须知道何为三焦?古人把膈以上划为上焦,包括心与肺,膈以下脐以上为中焦,包括脾与胃,脐以下为下焦,包括肝、肾、大小肠、膀胱……微创治牙龈炎效果怎么样牙疼并不是病,疼起来要人命,我们都知道牙疼的时候整个人都非常的不舒服,同时吃饭的时候没有食欲,现在治疗牙龈炎的方法在逐渐的增加,虽然对于疾病的痊愈有了一定的保证,但是很多治疗方……别小看白萝卜汁多喝促进消化消炎杀菌消肿止痛白萝卜是人们日常饮食中经常食用的一种食材,炖汤凉拌还是烹炒,味道都是很不错的。随着人们养生意识的增强,白萝卜受到越来越多的人喜欢,很多人喜欢直接拿白萝卜来吃,有些人则喜欢将白萝……
爆糗的买单看谁脸皮厚1、本人在餐馆兼职,今天有一男一女来买东西大概三十多块。男的拿出一张一百的给我,女的说:我有零钱,今天我请客!于是我接过她递过来的五十,看着她把一百拿回去顺手塞进了……贾警察与真骗子(一)骗子:喂,知道我是谁吗?警察:是儿子吗?骗子:不是。警察:那是孙子吗?骗子利索挂断电话,嘀咕:想占老子便宜。警察跟着挂断电话,嘀咕:谁……挂机儿子生性乐观幽默,能从平凡枯燥中找到乐趣。周六晚上他熬夜看书周日很早就醒了,我们约定过周日复习英语的。照例,他一边读课文一边翻译,这种复习很没劲,他又没睡好,困得要命,趴在床上……复活节岛石像之谜史前文明的杰作在南太平洋中,有一个与世隔绝的神秘岛屿,小岛周围方圆2000公里范围内没有任何人居住,真正的不食人间烟火。只有在2000公里外有一个很小的小镇,住着原住民。岛屿周围只有辽阔的草……素媛案件真实故事过程现实远比电影更加残酷惨无人道素媛案是大家耳熟能详的一个事件,其凶手的残忍行为令许多人都感到愤怒,各国人民都有声讨凶手的声音出现,而凶手也受到了相应的制裁,根据素媛案改编的电影也获得了各种奖项,那么大家一定……美国登月终止计划谜团美国成功登月了几次被外星人警美国在1969年带着人类千古以来的梦想登上了月球,但此后美国登月是真是假一直备受质疑。在此后,美国登月计划被终止了,人们纷纷猜测美国登月终止计划谜团是被外星人警告了,宇航员在月……蜜子红枣饮风清热养肝明目功效蜜子红枣饮配方:红茶2克,枸杞子,白菊花,食盐各10克。制法:以上材料放入茶壶内,冲入开水,加盖,浸泡15分钟即可。用法:每日服用1剂。……高端品牌如何去做好营销国际高端品牌最喜欢采用的营销策略,而且效果比较明显的营销方式,其实不外乎这样几种:讲故事;讲历史,尤其是与皇室、名人、贵族挂钩;强调手工;强调稀缺与独有;强调最强的科技;强调设……这些管理者忽略的细节才是员工离职的真相员工离职,特别是老员工的离职,在大多数情况下是一个双输的格局。赶走员工的原因难道真的是世界那么大,我想去看看吗?大多数员工离职的原因,还是钱给少了。除了钱给少了,还是哪些重要细……渐变美甲制作教程操作方法01:hr清理完指甲后,首先涂上一层透明打底,以防止指甲着色。02:hr待透明甲油干透后,涂上一层纯白色甲油,作为背景,使后面涂上的渐变色更加饱满。0……冰点脱毛安全吗会不会有副作用呢有些人在选择冰点脱毛手术的时候,由于不了解这种方法的优劣,也不知道到底安不安全,很难选择适合自己的方案。那这种方法到底安全不安全?变美方案01:hr冰点脱毛手术非常……宣传教育调解述职述廉报告精选多篇第一篇:市商务局副局长(分管执法宣传和教育)2014年述职述廉报告市商务局副局长(分管执法宣传和教育)2014年述职述廉报告2014年在商务局党委领导下,围绕中心工……
友情链接:易事利快生活快传网聚热点七猫云快好知快百科中准网快好找文好找中准网快软网